
Big-data-based edge biomarkers: study on dynamical

drug sensitivity and resistance in individuals
Tao Zeng, Wanwei Zhang, Xiangtian Yu, Xiaoping Liu, Meiyi Li and
Luonan Chen
Corresponding author. Luonan Chen, Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell
Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China. Tel.: þ86 21-5492-0100;
Fax: þ86 21-5497-2551; E-mail: lnchen@sibs.ac.cn

Abstract

Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynam-
ical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article
gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are
defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sour-
ces and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomed-
ical big data are typically ‘small-sample size in high-dimension space’, i.e. small samples but with high dimensions on
features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as ‘large-
sample size in low-dimension space’, i.e. big samples but with low dimensions on features. Then, we demonstrate the
concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional
biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease
state by learning differential associations between molecules rather than differential expressions of molecules during dis-
ease progression or treatment in individual patients. In particular, in contrast to using the information of the common
molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge bio-
markers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state
by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is
required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally,
we provide a case study on analyzing the temporal expression data from a malaria vaccine trial by big-data-based edge
biomarkers from module network rewiring-analysis. The illustrative results show that the identified module biomarkers
can accurately distinguish vaccines with or without protection and outperformed previous reported gene signatures in
terms of effectiveness and efficiency.
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Introduction

Characterizing individual diseases is a key to achieve the preci-
sion medicine by indicating disease states of individuals, and
also personalized medicine by designing treatments for individ-
uals [1–3]. In general, the specific features of individuals for
complex diseases are indicated by the sequence mutations or
single nucleotide polymorphisms (SNPs) [4–7]. However, SNPs
and mutations generally provide static characteristics on the
personalization, e.g. risk of a patient on disease, rather than the
current disease state of the patient. In other words, they fail to
tell us the dynamical characteristics of a patient on disease
development or treatment, e.g. disease state and its critical
transition. In contrast, the newly precision medicine promises
to ‘deliver the right treatments, at the right time, every time to
the right person’ [8–12], which requires not only static but also
dynamical features of individuals. Along with the development
of translational medicine [13–20], increasingly accumulated
new biomedical data as well as the new technologies become
available, and can be exploited to accurately diagnose the dis-
ease states and also design precise treatment of individual
patients. Particularly, to improve the accuracy of diagnosis and
prediction, a key issue is to characterize and quantify the
dynamical characteristics of disease progression and treatment
process [16], e.g. identifying dynamical network biomarkers [21],
and drug sensitivity and resistance biomarkers. To address this
problem, developing big-data-based novel biomarkers for the
diagnosis or prognosis purpose of diseases for individual
patients is one important and necessary determinant.

’Big data’ are characterized by four ‘V’ features emerged in
traditional research fields (e.g. society or economy) [22], i.e.
Volume, Variety, Value and Velocity. In contrast, in the field of
biology or biomedicine, the big data generally have different
features, which lie in: (i) small sample size but in high (or big)-
dimension space, e.g. omics data for each individual, rather than
the traditional big sample size but in low (or small)-dimension
space; in other words, biomedical big data are ‘small-sample
size in high-dimension space’ or small big-data, comparing
with traditional ‘large-sample size in low-dimension space’ or
big small-data in many other fields [23, 24]; (ii) the strong diver-
sity or heterogeneity of biomedical big data, which are observed
at differential levels, scales and viewpoints [25, 26]; and (iii) the
high-value density of biomedical big data with abundant and
dynamical information [27–29]. Such features on biomedical big
data demand special theoretical and computational methodolo-
gies to exploit the information for elucidating essential mech-
anisms of biological phenomena and complex diseases at the
system level, and turning data into meaningful biological appli-
cations and knowledge. In particular, to apply such biomedical
big data in precision medicine or personalized medicine, there
is a pressing need to integrate them on the systematical level
for biomarker discovery by unified mathematical methods.
Currently, one of such promising methods is attracting wide at-
tention on analyzing biomedical big data, known as the network
biology [30, 31] and network biomarkers [32, 33], i.e. exploring
network information for biomarker discovery. On the other
hand, based on the biological data, many interactions or associ-
ations among molecules can be embedded into the biomarker
discovery or directly used as novel biomarkers for disease

prediction [32, 34]. Biomarkers are evolving from individual
molecules to a network of molecules (Figure 1), e.g. network bio-
markers or edge biomarkers [21, 32, 34]. It has been well recog-
nized that a biological function or signal transduction involved
in phenotype changes, e.g. disease occurrence or disease recov-
ery [32, 34], is facilitated by the associated interactions (or
edges) between molecules, rather than individual molecules. In
fact, the concept of ‘edgotype’ has already linked the genotype
as interactions to phenotype [35]. Meanwhile, the intensive
researches on ‘edgetics’ have also revealed the malfunctions of
interactions as the key molecular mechanisms relevant to
so-called ‘edgetics’ diseases. In all, edge biomarkers for preci-
sion medicine or personalized medicine are expected to achieve
the accurate diagnosis and prognosis by combining biomedical
big data and network information.

Currently, one colossal difficulty for the biomarker discovery is
big samples on population but small samples on each individual
[34], i.e. so-called small big-data problem concerning extreme un-
balance of sample sizes between population and individual.
Because of high heterogeneity of disease on each person, the diag-
nosis and prognosis have to be conducted on an individual basis,
which implies the necessity of the individual biomarkers derived
from the limited small samples on each patient. In the academic
studies, researchers have the possibility to collect many samples
from animal models or clinical patients, and carefully design the
measurements of big data required by the disease study. But, in
the real clinical applications, there will be many unavoidable eco-
nomic or clinic problems, e.g. huge cost of advanced disease test
or long-term follow-up of patients, so that the clinical data about
one patient are much less than that available to a general disease
cohort. For example, in the clinical experiment on drug therapy, it
is easy to collect many blood samples of one volunteer at con-
secutive intervals/hours, but, in a hospital, physicians are always
required to diagnose a patient by only one or few blood samples.
Therefore, the research study by learning from big samples of one
individual would be different from the clinical application by pre-
dicting from small samples of one individual. To apply big-data-
based biomarkers in such a situation, it is necessary to generate
dynamical features rather than conventional static features from
available samples, and measure or evaluate them on one or a few
samples in an individual basis. Thus, to challenge this problem,
big-data-based edge biomarkers including dynamical network
biomarker (DNB) [21] were developed, and they are those bio-
markers derived from the network information and biomedical
big data (in high-dimensional space) that are expected to diagnose
and predict the disease state on an individual basis.

As a representation of big-data-based biomarkers, big-data
edge biomarker is a new concept to characterize disease features
from multiple samples with high-dimensional data in a network
manner [34], which also provides alternative strategies to indicate
disease or predict treatment response in a single sample. An ad-
vantage of edge biomarker is to exploit the information of differ-
ential correlations or differential associations disregarded in the
conventional approaches. Traditionally, molecular biomarkers or
node biomarkers are the molecules identified from the differen-
tially expressed genes (DEGs) or molecules, thereby leaving a large
amount of the non-differentially expressed genes (NDEGs) or mol-
ecules unexamined [36]. But, the ‘edgotype’ (or edgetics) of many
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NDEGs have shown their important roles in the state alterations
of biological systems [37, 38]. Dissimilar to individual DEGs to indi-
cate the over/down regulation in different conditions, two inter-
active NDEGs (as a gene-pair or edge) can exhibit changed
correlation from positive to negative regulation, or vice versa.
These changes of genes’ correlations result in the different states
of a biological system (e.g. normal, diseased or treated). Therefore,
the networks of biomarkers or edge biomarkers are able to identify
more essential features of biological systems than the conven-
tional molecule biomarkers, even from those NDEGs. On the other
hand, the rapid advance on high-throughput technologies provide
high-dimensional omics data for network-based biomarker dis-
covery [27, 39], where an interaction or edge for a pair of molecules
can be represented by their correlation [e.g. Pearson coefficient
correlation (PCC) between a pair of molecules], numerically esti-
mated from multiple samples. To some extent, the multiple sam-
ples collecting for one person is becoming reality, e.g. an
integrative personal omics profile including genomic, transcrip-
tomic, proteomic, metabolomic and autoantibody profiles from a
single individual over a 14 month period [40]. By using such data
of small samples but with high dimensions, big-data-based edge
biomarkers based on module network rewiring-analysis (MNR)
[41] were developed and can distinguish consistent gene modules
and rewired module interactions and further measure the activ-
ities of those modules and interactions as the biomarker indica-
tors. MNR has achieved superior performance on predicting
therapy response of individual patients by analyzing temporal
transcriptional profiles [41]. In addition, another effective strategy
to identify big-data-based edge biomarkers in single samples is an
EdgeMarker approach and an EdgeBiomarker approach [36, 42],
which were developed to address the difficulty for obtaining cor-
relations or edges from one sample. Specifically, EdgeMarker de-
composes PCC into multiple elements so that a new vector
embedding correlation-like information instead of conventional
vector of raw expression can be used to quantify the edge bio-
marker even in one sample [36, 42]. Dissimilar to conventional
biomarkers, big-data-based edge biomarker (e.g. EdgeMarker,
EdgeBiomarker or module biomarker in MNR) is able to predict
the disease state by differential associations between molecules

rather than differential expressions of molecules during disease
progression or treatment in individual patients. In particular, in
contrast to using the information of the common molecules or
edges across a population in traditional biomarkers including
network and edge biomarkers, big-data-based edge biomarkers
are further specific for each individual so as to accurately evalu-
ate the disease state by considering the individual heterogeneity,
and thus high-dimensional data are required not only in the
learning process but also in the diagnosing or predicting process
of the tested patient.

This article intends to give a comprehensive review on bio-
medical big data and edge biomarkers currently available for
diagnosing and predicting complex diseases in an individual
patient. The section on ‘Big data sources for studying complex
diseases and biomarkers’ mainly describes the sources and
structures of biomedical big data accessible in public for disease
study. ‘Big-data-based edge biomarkers for diagnosing and pre-
dicting disease states for each individual’ briefly demonstrates
the concept, model and algorithm for identifying edge
biomarkers by big data. ‘Rationale and hypothesis of big-
data-based edge biomarkers for predicting dynamical drug sen-
sitivity and resistance’ provides a case study for dynamical
drug sensitivity and resistance by edge biomarkers based on
MNR.

Big data sources for studying complex
diseases and biomarkers

At present, there are many publicly available data sources for
biology and medicine, which can be explored to study bio-
markers. They can be categorized as database, type and tool
platform, which are briefly summarized in Supplementary
Table S1. One typical feature of biomedical big data is ‘small-
sample size in high-dimension space’, e.g. omics data for each
individual, and it is big samples on populations but small sam-
ples on individuals, in contrast to the traditional ‘large-sample
size in low-dimension space’ data in many other fields. Thus,
the biomedical big data for individuals are characterized by

Figure 1. Biomarker discovery.
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small samples with high dimensions, and it is a challenging
task to exploit the information from such big data for biomed-
ical applications [43, 44]. The conventional ‘big data’ empha-
sizes large samples, typically in low-dimensional space;
however, the number of samples in biomedical data is large on
populations but small on individuals, and also the data are gen-
erally represented in high-dimensional space, i.e. it is high-
dimensional and small-sample size data. For instance, gene
expression data, protein expression data and medical imaging
data for each individual are such biomedical data. In clinical
practice, diagnosis, prognosis and treatment are all conducted
on an individual basis, and thus typical biomedical data for
each individual are considered as ‘small-sample size in high-
dimension space’. In other words, the number of samples for a
population is large, e.g. many blood samples collected from a
cohort of patients, but the number of samples for an individual
is still small, e.g. few blood samples collected from one patient,
and thus ‘small-sample size in high-dimension space’ charac-
terizes such big biomedical data.

The representative databases include: (i) databases depositing
high-throughput data, e.g. TCGA [45, 46], NCBI GEO [47, 48], EMBL-
EBI [49, 50] or GigaDB [51, 52]; (ii) databases for biological se-
quences and elements, e.g. ENCODE [53]; (iii) databases depositing
experimental results about cells exposed to a variety of perturb-
ing agents, e.g. LINCS [54, 55]; (iv) databases for physical or associ-
ated networks, e.g. KEGG [56, 57] or STRING [58]; and (v) databases
depositing prior-known functional annotation of biological elem-
ents, e.g. Gene Ontology [59]. The representative data sets in-
clude: (i) DREAM Challenges providing potential benchmarks for
assessing the cellular network inference and quantitative model
[60, 61]; (ii) WTCCC providing well-designed solutions on gen-
ome-wide association studies to understand the patterns of
human genome sequence variation [62]; and (iii) Cancer Cell Line
Encyclopedia characterizing the complete genetic determinations
of about 1000 human cancer cell lines, with DNA copy number,
messenger RNA expression, mutation data and more [63]. The
representative tool platforms are Cytoscape [64–66] and Ingenuity
pathway analysis [67]. The representative research projects usu-
ally aim to provide large number of samples and data to reveal
the system-wide features of living organisms. To provide a com-
prehensive source on human genetic variations, 1000 Genomes
Project [68, 69] is the first project to sequence the genomes of a
large number of people, and to find most genetic variants that
have frequencies of at least 1% in the populations studied. Along
with reduction of sequencing cost, several projects have been
proposed to cover more persons. 100K Genomes Project [70]
focuses on patients with a rare disease or cancer and their fami-
lies, and plans to sequence whole genomes of 100 000 patients
from National Health Service. 100K Wellness Project [71] provides
new concepts and technologies to achieve the fundamentally
change on how healthcare is practiced. As its a 10 month pilot
study, the Hundred Person Wellness Project is to optimize well-
ness and minimize disease for 100 ‘well’ individuals by quantify-
ing self measures from each individual [72], whose data are
collected and integrated from whole-genome sequencing, gut
microbiome and clinical laboratory tests. The final goal of 100K
Wellness Project [72] is to provide markers and their multi-par-
ameters, quantifiable wellness metrics to evaluate/predict the
early disease transitions for most common diseases, further to
achieve earlier disease intervention and, finally, to transit the in-
dividual from a disease back to a wellness trajectory as early as
possible [72].

On the other hand, although there are so many data sources,
they have significant different representative structures. The

typical structures of biological data are briefly shown in
Supplementary Table S2. Firstly, annotation data [59] and net-
work data [58] are the common knowledge bases in biology or
medicine. The annotation data for biological elements (e.g.
genes, proteins, interactions) are usually represented as a topo-
logical structure (e.g. tree), and each element is described on the
origin, function, mutation and more [59]. The network data are
represented as a table: each row represents an interaction or
association; commonly the first and second columns give the
symbols of genes/proteins involved in the interaction, and the
third column points a weight value to indicate the confidence
on the this interaction [58]. Obviously, a gene may have multiple
functions annotated because of its participation on several
interactions. However, these common knowledge bases are
nonspecific for biological conditions, and thus cannot provide
specific functions of this gene in a particular biological condi-
tion, or disease. In contrast, the omics data can provide
condition-specific data [73–75]. Generally, there are four kinds
of structures of individual-specific omics data: (i) control-case
data, e.g. the expression data collected from the tissues or cells
at time points before and after perturbation [76]; (ii) multiple-
level data, e.g. the expression data, methylation data and
sequence data collected for a single disease sample [45, 46]; (iii)
multiple-time data, e.g. the expression data of blood samples
collected at different time points for a patient receiving treat-
ment [77]; and (iv) multiple-time and level data, as a combin-
ation of multiple-level data and multiple-time data, e.g. the
expression data, metabolic data and clinical data collected for
one person at different life time [40].

Big-data-based edge biomarkers for
diagnosing and predicting disease states
for each individual

Recently, edge biomarker, network biomarker and DNB [21, 33]
have been proposed to study the biological system and its dys-
function in a systematical and dynamical manner, which have
demonstrated great potential to predict the disease state in an
individual basis of patients, in particular, by exploiting the asso-
ciation and dynamical information from biomedical big data.

Generally, biomarkers are used to evaluate the states of dis-
eases or other changed phenotypes. The discovery of biomarker
includes two stages (Supplementary Figure S1A): (i) identifica-
tion of biomarkers from the available data of the collected sam-
ples from multiple individuals, and (ii) application of the
biomarkers on the data of a new test sample from one individ-
ual. In terms of mathematical models, the identification of bio-
marker is known as a process of learning from the available
data, which uses machine learning or optimization techniques
to identify several features (e.g. molecule markers) to discrimin-
ate different phenotypes (e.g. response or nonresponse of
treated samples). Meanwhile, the application of biomarkers is
just a step of predicting on new data, which uses the identified
features to evaluate/predict the phenotype of a test sample
(e.g. if a sample or its represented individual has treatment
response or not). Recent research works have classified the gen-
eral biomarkers into four categories (Supplementary Figure S1B)
according to the type of network information used in above two
steps [34]. Briefly speaking, (i) node or molecular biomarkers,
which exploit the information of differential expressions on a
number of individual molecules in both two steps, e.g. differen-
tial expression of genes [78] or differential mutation of genes
[79]; (ii) network-based biomarkers or network-weighted bio-
markers, which exploit correlation or association information
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between molecules to identify interactive molecules in the
learning step, but only molecules (or a molecule set) without
their network information in the predicting step, e.g. PinnacleZ
approach extracting discriminative subnetworks rather than
individual genes from a protein interaction network [80] or
CORGs-based classification method to infer the activity level of
a given pathway [81]; (iii) edge biomarkers (or network bio-
markers), which exploit correlation or association information
between molecules in both two steps for learning and predict-
ing, e.g. PPI-SVM-KNN model proposed to classify time series
gene expression via integration of biological networks [82] or
EdgeMaker approach to extract differentially correlated gene-
pairs (DCPs) from NDEGs [36]; (iv) DNB or dynamical edge bio-
marker explores dynamical information of data together with
network information in two steps, which is able to further
detect the critical stage just before the serious deterioration of a
disease during the disease progression, e.g. MNR designed
based on the temporal expression data of multiple individuals
[41] or DNBs identified from dynamic protein–protein inter-
action networks to analyze the underlying mechanisms of com-
plex diseases [83]. Different from conventional node biomarkers
to explore differential expressions of molecules between a dis-
ease state and a control state, edge biomarkers are expected to
learn and predict by exploring differential associations among
molecules, which can provide a systematical and dynamical way
to decipher the biological system responding to drug or therapy
treatment. Clearly, types (iii) and (iv) could be big-data-based
edge biomarkers because they are derived from the network in-
formation and big data, and also the prediction on a test sample
(or a patient) by them requires the high-dimensional data of such
a sample (or patient). In other words, big-data-based biomarkers
are generally sample or individual specific either on evaluation of
the biomarkers or on composition of the biomarkers, although
many of those markers are common across all populations de-
pending on the personal characteristics.

An unavoidable problem for both edge biomarkers and net-
work biomarkers is the requirement of multiple samples in the
predicting step. For a particular patient, when multiple samples
are available, node biomarkers can make the diagnosis or pre-
diction based on the expressions of those marker molecules,
e.g. average expression, or relative value (e.g. average fold
change) or even statistic value (e.g. P value); meanwhile, edge
biomarkers can do it based on the correlations, e.g. PCC from
the multiple samples. But, when only one sample is available
for an individual, the correlations cannot be evaluated on one
sample directly although there is no such problem for node bio-
markers. Therefore, the approaches of edge biomarkers can be
further grouped to two categories as single sample-based and
multiple sample-based methods [34].

Generally, the main procedures of identifying above edge-
based biomarkers include the following steps:

i. Collecting data from experiments or databases, e.g. mul-
tiple-level omics data [84] or temporal expression data [85];

ii. Transforming the original data from a form of node data to
a form of edge data, e.g. from raw expression profiles [78] to
correlation-like vectors [36];

iii. Selecting feature nodes or feature edges by a feature selec-
tion method [86];

iv. Quantifying the node biomarkers or edge biomarkers by
scores, e.g. based on expression, correlation or activity [81];

v. Building classification or prediction model based on node
biomarkers, or edge biomarkers or their combinations by a
machine learning method [87];

vi. Evaluating the phenotype of a new test individual with one
or more samples by the biomarkers and their corresponding
measurements on one or more samples.

In summary, the high-dimensional data even with small sam-
ples, such as multiple-level data or multiple-time data, provide a
great opportunity to achieve the personalized medicine or preci-
sion medicine in a systematical and dynamical manner, e.g. con-
struct big-data-based edge biomarkers to predict the disease state
and treatment response in an individual basis. Different from
conventional biomarkers that use the information of only the
common molecules or edges across a population including net-
work and edge biomarkers, big-data-based edge biomarkers are
specific for each individual either on evaluation of those common
biomarkers or on composition of those biomarkers so as to accur-
ately evaluate the disease state by considering the individual het-
erogeneity, and thus not only the learning process but also the
diagnosing or predicting process requires to measure big data, i.e.
high-dimensional data for each individual, not limited to the in-
formation of those obtained markers.

Rationale and hypothesis of big-data-based
edge biomarkers for predicting dynamical
drug sensitivity and resistance
Rationale and hypothesis of biomarkers for predicting
treatment response

For conventional node-based biomarkers, their discoveries
require the evaluation on the average expressions of markers,
e.g. gene expressions are significantly different between control
and case populations just like individuals with or without pro-
tection in drug treatments, which assumes that the functional
gain and loss on gene expression/transcription are the deter-
minants of cellular response to drug sensitivity and resistance
(Figure 2). For example, to apply predictive biomarkers to opti-
mal therapy on cancer patients, dynamic BH3 profiling has been
used to predict chemotherapy response across many cancer
types and many agents, including combinations of chemothera-
pies by measuring early drug-induced death signaling with dif-
ferential 4% priming [88]. SHON has been identified as a novel
human oncogene with predictive utility in ERp breast cancer,
offering a simple biomarker to predict the therapeutic efficacy
of antiestrogen therapy in patients with breast cancer [89].

For edge-based biomarkers, their discoveries require that the
correlations between two markers, e.g. a gene-pair, are signifi-
cantly different in control and case populations, which assumes
that the functional gain and loss on gene association/inter-
action determine the response to drug sensitivity and resistance
(Figure 2). For example, a framework named as Multivariate
Organization of Combinatorial Alterations has been proposed to
effectively combine many genomic alterations into biomarkers
of drug response by using Boolean set operations coupled with
optimization, which is extended from conventional one based
on pairwise interactions [90]. An in silico approach, as a software
tool ExprEssence, has been applied to identify specific mechan-
isms relevant for TFAC therapy response, from a gene/protein
interaction network [91]. Besides, a simple prediction frame-
work has been designed based on the genome-wide and quanti-
tative profiling of cellular responses to individual drugs, whose
correlation-based strategy can reveal the synergistic effects of
drug combinations [92].

For module-based biomarkers, their discoveries depend on
searching a combination of DEGs and DCPs in a form of network
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(e.g. module), whose quantitative measurements based on the
members of the module (e.g. the activity of the corresponding
meta-marker) should have significant differences between con-
trol and case populations (Figure 2). The hypothesis underlying
such kind of biomarkers is that the response to drug sensitivity
and resistance should be executed by functional gain and loss
on the gene network rather than individual genes. In cases of
such biomarkers, an intact commensal microbiota that forms
an interacted network as a module biomarker modulates mye-
loid-derived cell functions in the tumor microenvironment or
optimal responses to cancer therapy [93]; and organ transplant
recipients treated with a posttransplant therapy that combines
immunosuppressive and antiviral drugs, can offer a new win-
dow into the effects of immune modulation to measure the
health of the immune system, and the connections between
immune strength and the viral component of the microbiome
[85], which can be viewed as a module biomarker.

Particularly for big-data-based biomarkers, their extractions
require to detect a combination of modules in a form of network
of networks (e.g. module network), whose quantitative measure-
ments dependent on their members (e.g. the activity of the cor-
responding meta-markers) and all other members (e.g. the
activity of the module network connecting meta-markers) should
have significant differences between control and case popula-
tions (Figure 2). The systematical assumption of this kind of bio-
markers is that the response to drug sensitivity and resistance
should be executed by the consistent functional gain and loss on

a group of network modules (e.g. population-common variations)
and occasional changes among them (e.g. individual-specificity
variations). In fact, several studies have provided evidences on
the capability of whole high-throughput data as effective bio-
markers, rather than the low-throughput data or dimensionality
reduction from high-throughput data. Such researches include
the following works: optical metabolic imaging has shown poten-
tial as a high-throughput screen technique to test the efficacy of
a panel of drugs and to select optimal drug combinations for can-
cer treatment in individual patients [94]; a ridge regression model
has been built for the prediction of chemotherapeutic response in
patients using only before-treatment baseline tumor gene
expression data, where the models are fitted for whole-genome
gene expression against drug sensitivity in a large panel of cell
lines by allowing every gene to influence the prediction [95]; a
high-complexity barcode library, ClonTracer, has been developed
to enable the high-resolution tracking of >1 million cancer cells
under drug treatment, and provides quantitative assessment of
the ability of combination treatments to suppress resistant clones
[96]; rather than disease state, DNB was proposed to detect
pre-disease state (or critical state) during disease progression [21,
33], and DNB is a group of molecules characterized with
strong correlations but strong variations for those DNB mol-
ecules; and MNR [41] was designed based on the temporal expres-
sion data of multiple individuals, which has been carried on the
analysis of Hepatitis C Virus (HCV) patients receiving interferon
treatment.

Figure 2. Summary on the rationale and hypothesis of biomarkers.
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Typical instances of experimental data and biomarker
model for predicting treatment response

Depending on the type and structure of data, conventional
mathematical models on characterizing and predicting treat-
ment response can be grouped as static approaches and dynam-
ical approaches.

Static approaches usually used the sequences from host or
virus to evaluate the risk or probability of treatment response
[97–99]. Taking the treatment of HCV patients as examples, the
HCV genotypes of HCV [100], the nucleotide sequence of the
hepatitis C virus genome [101], the genomic complexity of hepa-
titis C virus [102] and the host and virus genome variability [103]
all have been reported to be associated with patient response to
interferon. Those data were used to analyze the treatment
response in many previous works.

Meanwhile, dynamical approaches explore the high-dimen-
sional information of omics data, especially the temporal
expression data currently (note, the control-case study can be
considered as sampled at two different time points). There are
several similar well-designed experiments on the temporal
expression profiles of patients with different diseases, e.g.
Influenza, HCV or multiple sclerosis (MS). According to the scale
of sampling interval, the categories of temporal expression can
be short interval (e.g. scale of hours), medium interval (e.g. scale
of days or weeks) and long interval (e.g. scale of months or
years), respectively. Disregarding the particular type of disease,
or drug, there are some common mathematical models used to
analyze the signatures of treatment response according to the
organization of expression data, e.g. differential expression ana-
lysis [104, 105], machine learning analysis [87] and network-
based analysis [32, 106, 107].

As an example of short-interval data, the gene expressions
of Influenza patterns were collected at different hours. An
important determinant of disease progression is known as the
host response, especially for differentiating symptomatic and
asymptomatic Influenza A infection [77]. To understand the
host response on molecule levels, 17 healthy human volunteers
received intranasal inoculation of influenza H3N2/Wisconsin,
and 9 of them developed mild to severe symptoms according to
standardized symptom scoring [77]. A total of 267 gene expres-
sion profiles were obtained for all volunteers at 16 time points,
as an interval of �8 h post inoculation (hpi) through 108 hpi
including baseline (�24 hpi). In a way of bioinformatics analysis
[77], Bayesian Linear Unmixing was used to establish an ab initio
molecular signature strongly correlated to symptomatic clinical
disease; EDGE and SOM were also used to investigate the key
host factors temporally related to symptomatic and asymptom-
atic volunteers. Recently, DNB-based approaches (e.g. edge net-
work analysis [108] or single sample-based DNB [109]) have
been developed and applied on analyzing this data set, which
not only predict the symptomatic or asymptomatic Influenza A
infection but also identify the critical time before the symptom
of infection appears for a particular volunteer.

As an example of medium-interval data, the gene expres-
sions of HCV patients were measured at different days or weeks.
To compare the treatments of HCV patients with different
therapeutic regimens, the kinetics of gene expression of periph-
eral blood mononuclear cells (PBMC) were measured during the
first 10 weeks [i.e. before treatment (Day 1) and at Days 3, 6, 10,
13, 27, 42 and 70 days after treatment] of therapy in 20 HCV pa-
tients treated with Pegylated-interferon-alfa2b and ribavirin
[110]. Differential expression analysis was carried on, and the
genes with deregulation at given time points were investigated,

where the levels of gene up-regulation or down-regulation were
found to be similar to those reported with Pegasys/ribavirin
treatment previously [110]. In addition, a new classification
algorithm (e.g. a time-dependent diagnostic model [111]) and
new edge biomarker (e.g. MNR [41]) were proposed to further
improve the discrimination on responders and nonresponders.

As an example of long-interval data, the time-course gene
expressions were tested at different months or years. For MS
patients treated by recombinant human interferon beta (rIFNb),
a relatively large proportion of them are nonresponders [112].
To detect treatment-outcome-associated higher-order predict-
ive patterns on expression of PBMC, a temporal kinetic reverse-
transcription polymerase chain reaction data set was generated
on 70 genes of 52 MS patients receiving rIFNb treatment [112].
Briefly, in the patients, 33 had good prognosis, and the other 19
had poor prognosis; and for each patient, the expression pro-
files of 70 genes on seven time points (0, 3, 6, 9, 12, 18 and
24 months after the treatment) were measured. From the view-
point of data mining and predictive modeling [112], a Bayes’
score was defined for each gene triple representing the prob-
ability of a patient being a good responder; and then several
best predictive gene triplets (i.e. classifiers) were combined into
a committee; finally, a majority voting scheme was used to
decide which class a new sample would be assigned. Based on
this data set, some new gene features (e.g. negative correlation
based gene markers [113]) or new classification models (e.g. hid-
den Markov models [114] or HMM/GMM hybrid model [82]) were
further proposed to improve the prediction power.

As described above, biomedical big data (e.g. high-dimen-
sional omics data) indeed have been widely used in biomarker
study and application. Conventional node biomarkers extract a
few gene signatures from data with high dimensions according
to differential expressions of separate molecules, and use only
such signatures’ low dimensions in prediction. Meanwhile, net-
work and edge biomarkers can detect several gene-pair signa-
tures from high-dimensional data according to differential
associations of interactive molecules, and still use such low-di-
mensional signatures in prediction. Obviously, these bio-
markers use the information of the common identified
molecules or edges across a population disregarding individual
specificity. In contrast, big-data-based edge biomarkers (e.g.
module biomarker in MNR [41]) make full use of not only com-
mon molecules or edges (e.g. consistent modules in MNR [41])
but also conditional molecules or edges (e.g. module inter-
actions rather than molecule interactions in MNR [41]). Thus,
big-data-based edge biomarkers could be specific for each indi-
vidual so as to accurately evaluate the disease state by consider-
ing the individual heterogeneity, in which high-dimensional
data are required not only in the learning process but also in the
diagnosing or predicting process for the tested patient.

A case study on biomarker discovery of dynamical drug
sensitivity and resistance

As an illustration of big-data-based edge biomarkers in analysis
of dynamical drug sensitivity and resistance rather than per-
formance comparison, MNR is used in the reanalysis of tem-
poral expression data from a malaria vaccine trial [115] for
displaying the routine analysis and feature outcomes of big-
data-based edge biomarkers.

MNR firstly builds time-specific network from individuals,
then extracts the common/stable modules (termed consistent
modules [41]) across those time-specific networks. Next, it uses
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these modules as nodes, the interactions between modules as
edges, to reconstruct the module network for each individual at
particular time point or time period. Thirdly, an activity score of
module or module interaction measured by molecular expres-
sions and molecular associations was developed. Obviously, in
the learning step, MNR can learn any features of the molecule
network rather than individual molecules corresponding to a
particular individual at a specific time, which could provide
more clues (e.g. quantitative state of network by activity score)
about the personal features at a molecular level, e.g. responses
of treatment. In the predicting step, with at least three samples
available for each individual, its molecule network can be esti-
mated and the activity score can be calculated, and then these
activity measurements can be applied to predict the state of bio-
logical system transition, e.g. outcome of treatment. Not limited
to the measurement of those obtained markers, MNR requires
high-dimensional data (omics data) or the measurement of
other molecules (e.g. interactions between consistent modules)
to evaluate the edge biomarkers (e.g. consistent modules) of the
new patient because of the heterogeneity, and thus it is a
method of big-data-based edge biomarkers. MNR was used to
analyze dynamical drug sensitivity and resistance. The main
results are summarized as follows.

i. Data description. MNR [41] has been applied to reanalyze
the temporal expression data from a malaria vaccine trial
[115]. In this study, samples were collected at study entry,
the day of third vaccination, 24 h and 72 h post the third
vaccination and 2 weeks post the third vaccination.
Thirteen of 39 vaccines were protected, and 26 of 39 were
not protected. To guarantee each vaccine has expression
data at the first five time points, the pre-procession gives
gene expression profiles with 13 436 genes, and 120 samples
(24 vaccines at corresponding five time points, where 11 are
protected and 13 are not protected without delay).
Obviously, these data would be multiple-time data from
medium-interval experiment.

ii. Brief results of MNR. Based on all patients’ five temporal
networks, we found 47 consistent modules and 44 appear-
ance-consistent modules during the whole procedure of
malaria vaccine trial, whose members are module network
genes (MNGs). Using the consistent modules with signifi-
cant KEGG pathway enrichment, module network can be
reconstructed for a group of protected or non-protected at
five time points, respectively, or reconstructed for each vac-
cine at three time windows, respectively. Each time window
contains consecutive three time points, noted as w1¼ [T0,
T1, T2], w2¼ [T1, T2, T3], w3¼ [T2, T3, T4], where, T0 is at study
entry; T1 is on the day of the third vaccination; T2 is 24 h
after the third vaccination; T3 is 72 h after the third vaccin-
ation; and T4 is 2 weeks after the third vaccination.

iii. Comparison with conventional DEGs. The previous study
[115] gave a list of DEGs indicating the response of vaccine
at 24 h post the third vaccination for all vaccines (Figure 3A
and B). In contrast, MNGs show different expression pat-
terns for protected vaccines and non-protected ones,
respectively (Figure 3C and D). These genes would have
functional associations during the process of vaccination,
but have different association network for particular vac-
cine, which might induce the successful protection or not.
They would have power to predict the final outcome of
challenge, as protected or failed in the following discussion.

iv. Modules and their functional enrichments related to dis-
ease and treatment. The consistent modules have

significant enrichments on diverse biological functions.
Many essential pathways were found to be enriched in sev-
eral appearance-consistent modules (see in Table 1):

a. Relation to essential functions, e.g. chemokine signaling
pathway and NOD-like receptor signaling pathway.
There was a study on the physiologic role of the duffy
blood group antigen, which serves as a receptor on the
red blood cells for the malarial parasite [116]. NOD- and
Toll-like agonists are important to instruct an appropri-
ate adaptive immune response, whose ligands have
possibility to generate new vaccine combinations [117].

b. Relation to HBV, e.g. Hepatitis B. There are some candi-
date malaria vaccines that have been produced based
on hepatitis B virus core [118, 119].

c. Relation to other diseases, e.g. HTLV-I infection and can-
cer. There is a well-known phenomenon of biological
false seropositivity with reactive EIAs and indeterminate
western blot patterns, which has been attributed to pos-
sible cross-reactivity with malaria antigens [120].
Although there are few studies of the relationship of can-
cer to malaria, analogies have been reported at the cellu-
lar level for the two diseases; the antimalarial artesunate
is possibly active against cancer; Epstein Barr Virus-
related Burkitt’s lymphoma is believed to require cofac-
tors, such as malarial infection, for tumor development;
even there is a relationship between malaria in the
United States and brain tumor incidence [121].

v. Module-based prediction of vaccine protection/response in
an individual patient. Firstly, for groups of vaccines with or
without protection, their modules’ evaluation on differen-
tial expression (E-score) and evaluation on differential
expression and correlation (EC-score) were calculated,
respectively as defined in [41]. Seeing Figure 4, these activity
measurements can discriminate the groups of protected or
not well, especially, EC-score have better discrimination
than E-score. This supports again differential correlation
rather than differential expression would be discriminative
features as novel biomarkers. Thus, the consistent modules
and their temporal activities can reflect the difference
between vaccines with or without protection on the level of
networks. Secondly, the activity of module interaction
(i.e. modules’ connection weights defined in [41]) for each
vaccine at a time period (i.e. consecutive three time points)
were calculated. This new activity profile was used to build
classification model by SVM, and predict the protection or
non-protection for each vaccine. At different time periods/
windows, the prediction accuracy (evaluated by average
area under curve (AUC) on 100� of 10-fold cross-validation)
is high, especially approaching to 100% at the days after the
third vaccination (Table 2). As control, the average expres-
sions of DEGs reported in previous study [115] were also
used, and their performance is no better than MNGs from
consistent modules (Table 2). Besides, a few probes/bio-
markers were identified to sort samples into protected and
non-protected of disease categories with 100% accuracy at
Day 5 after challenge [115], but they did not make prediction
at the days before challenge. These results strongly support
consistent modules, and their activities have high ability to
distinguish protected and non-protected vaccines ahead of
the previous biomarkers.

Finally, to quantitatively illustrate the efficiency of different
categories of biomarkers in the context of dynamical drug
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sensitivity and resistance, a number of state-of-the-art methods
have also been applied to this case study. Specifically, they
include: DEG (conventional node biomarkers), AEP [122, 123] and
frSVM [123, 124] (network-based biomarkers), PAC [81, 123],
GSVA [125] and Pathifier [126] (module-based biomarkers, or
pathway-based biomarkers) and MNR (edge-based biomarkers,
or big-data-based biomarkers). Similar to above evaluation on

DEG and MNG, five additional methods were also adopted to
extract biomarkers from all data, meanwhile discriminating the
protected and non-protected groups by using the average
expressions or scores in each time window. Particularly, four
methods, i.e. DEG, AEP, frSVM and MNR, possibly using biolo-
gical networks rather than pathways, can provide feature genes
in details. Thus, four groups of feature genes represented by

Figure 3. Expression profiles of DEGs and MNGs of individuals protected or non-protected. In each expression heat map, each row represents a gene and each column

represents an individual. (A) Expression profiles of DEGs of individuals protected. (B) Expression profiles of DEGs of individuals non-protected. (C) Expression profiles of

MNGs of individuals protected. (D) Expression profiles of MNGs of individuals non-protected.
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Figure 4. Different activity scores of consistent modules at different time points for two groups of vaccines. (A) E-score of consistent modules for groups of protected

and non-protected at different time points. (B) EC-score of consistent modules for groups of protected and non-protected at different time points. Here, Day 1 repre-

sents the day of the third vaccination; Day 2 represents 24 h after the third vaccination; Day 3 represents 72 h after the third vaccination; and Day 4 represents 2 weeks

after the third vaccination. Label R points toward group of protected, and NR points toward group of non-protected.
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Table 1. Appearance-consistent modules with significant enrichments on KEGG pathways

Id Gene members KEGG pathways

Module-Core-ap-1-0 BCL2L1,HSF1,AKT1,PTK2B,POLR3C,CAPRIN1,APLP1,FLAD1,PRPF4,
ZYX,OGDH,EIF3M,RBM34,RAN,FNBP4,HSP90AB1,PSMD6,CNPY2,
NAPA,BSG,RELA,WDR61,MAGOH,PNPLA6,ZNF207,YKT6,SHC1,
WDR1,P4HB,SPAG5,RANGAP1,CENPA,UTP14A,DHX15,SMARCD1,
SNRPD3,FKBP1A,RPL19,CSNK2A1,TWF1,SYNCRIP,NME6,ATIC,GTF2F1,
DNAJA4,PHB,GSK3A,RBBP4,MRPL42,TMEM189-UBE2V1,POP5,UBC,
NCAPG,ACTB,ABCE1,IKBKG,CAPZB,STMN1,ELAVL1,MRPL23,METAP2,
KHDRBS1,TM9SF4,EDC3,RC3H2,KRR1,UBE2L3,MATR3,MANEA,STIP1,
ARHGAP1,MRPL15,SREBF2,MRPL16,GPR172A,NONO,CHCHD8,CCNE1,
WDR18,FTSJ1,PAICS,RAB11B,TIMM13,PIK3R1,TRAF3IP3,PDHB,NUDT9,
MRPL12,MRPL13,MYO19,TRO,DLD,POP4,TFE3,POLR2E,BCCIP,MMACHC,
MRPL3,GART,ARPC4,ANAPC5,PBK,GINS2,PDAP1,PLSCR4,MRTO4,UBE2M,
CSNK1A1,ESR1,PSMD14,RPAP3,DSCR3,CDC20,MELK,RSL1D1,POLE3,
FLOT2,RSL24D1,HNRNPK,IPO5,EIF4A1,EEF1E1,METTL2A,TGFB1,KIAA0020,
PRKDC,CNBP,ARRB2,FBXO5,NVL,RPL36AL,IKZF1,RHOA,DCTN5,PKLR,
TEK,RBM12,POLDIP3,ASPM,TOMM22,E2F4,USF2,PSMA3,GTPBP4,PSMA1,
S100A9,PSMA7,PML,DDX19A,NFKB2,HNRNPC,RANBP1,TGFBR2,WTAP,
RPL5,TTC27,HNRNPA1,GNB1,DDX21,RXRB,TXN2,GGA3,GGA2,RELB,
UCHL5,PFN1,WAS,PTBP1,TARDBP,API5,UTP18,SHCBP1,IL2RG,AK2,MTF2,
STOML2,HMG20A,NXT2,WDR12,RPL10A,RAD51,GABPA,CCT2,SMARCE1,
MKI67,RPS16,VARS,DHX9,CEP57,RPS18,SF3B1,EIF6,PSMD10,MRPS17,
CHAF1A,NIP7,SMARCA2,ATAD2,EIF2S1,RNGTT,CPSF1,CAD,PTPN22,
NFX1,PRICKLE4,RBM42,IDH3G,PRPS1,RPL24,NRAS,DDX18,MAPKAPK2,
APEX1,ETS1,UBE2G2,ATG5,EPRS,EXOSC5,DAPK3,ASF1A,COPA,RAC2,
MCTS1,LSM5,NOLC1,LSM7,PMPCB,HGS,MRPS2,BUB3,MCM6,ARHGDIA,
CFL1,SSBP1,SNRPF,DEDD,ABCF2,CCNB1,DIS3,RPL26L1,EXOC7,SRRM1,
RPL34,RPL32,NUP37,RBMX,TYMS,PRMT1,CUL4B,DCAF7,BCL3,EMG1,
DKC1,ATF6,WDR77,M6PR

Chemokine signaling pathway
Spliceosome
Pancreatic cancer
Ribosome biogenesis in eukaryotes
Chronic myeloid leukemia
HTLV-I infection
Ribosome

Module-Core-ap-1-3 PCNA,CCNA2,NCAPD3,FANCG,MCM4,KIAA0101,KIF20A Cell cycle
DNA replication

Module-Core-ap-1-4 BRCA1,RAD21,SMC3,H2AFX,ESPL1,MYST4 Cell cycle
Module-Core-ap-1-6 SKP2,SUPT16H,RFC4,MSH2,H2AFZ,RAD51AP1 Mismatch repair
Module-Core-ap-1-7 ATP5C1,ATP6V0C,ATP5A1,NDUFS1,MDH1,VDAC2 Parkinson’s disease

Alzheimer’s disease
Metabolic pathways
Huntington’s disease
Oxidative phosphorylation

Module-Core-ap-1-11 THUMPD1,RPF1,RPL18A,RPL30 Ribosome
Module-Core-ap-1-12 IL7R,TUBA1C,MYC,TUBA1B Gap junction

Pathogenic Escherichia coli infection
Module-Core-ap-1-15 MAP2K2,POLE,ARAF,PKM2 Long-term potentiation

ErbB signaling pathway
Prostate cancer
Glioma
Non-small cell lung cancer
Melanoma
Renal cell carcinoma
Endometrial cancer
Acute myeloid leukemia
Chronic myeloid leukemia
Bladder cancer
Long-term depression
Central carbon metabolism in cancer

Module-Core-ap-1-16 PCYT1A,MAPK1,KPNA4,EXOC5 Choline metabolism in cancer
Module-Core-ap-1-18 SYK,CARD9,RIPK2,ARHGAP25 Tuberculosis

NOD-like receptor signaling pathway
Module-Core-ap-1-20 PIK3CD,CD3E,DNM2 T-cell receptor signaling pathway

Measles
Bacterial invasion of epithelial cells
Chagas’ disease (American

trypanosomiasis)
Fc gamma R-mediated phagocytosis

(continued)
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DEGs, AEPs, frSVMs and MNGs were further compared on their
network characteristics, so as to evaluate the biological inter-
pretation of biomarkers.

On one hand, Table 2 shows the efficiency of different meth-
ods or biomarkers to discriminate the protected and non-
protected groups, which are evaluated by AUC values. MNGs
have been shown to be better than DEGs. The performance of
DEGs decreases in the third time period. And AEPs display con-
sistent performance in different time periods, although their
AUC is not the highest. The AUC of frSVMs is not high, and de-
creases in the third time period as DEGs, which might be caused
by frSVMs; this implies the importance of the association/net-
work among feature genes. Meanwhile, among other three
pathway-based methods or biomarkers, Pathifiers have the best

performance. MNGs and Pathifiers achieve comparable per-
formances from two aspects: MNR is an unsupervised method
to extract the gene modules and quantify the scores of modules;
in contrast, Pathifier is a supervised method to quantify the
scores of prior-known pathways. Besides, GSVA estimates the
enrichment score of each pathway in one sample, and its per-
formance is also high although it decreases in the second time
period. The performance of PAC is not satisfactory in this case
study, which may result from the small-sample size.

On the other hand, Figure 5 shows the comparison results
among four groups of feature genes represented by DEGs, AEPs,
frSVMs and MNGs.

i. The edge biomarkers (i.e. MNGs) is better than the conven-
tional node biomarkers (i.e. DEGs) and network-based bio-
markers (i.e. AEPs and frSVMs), which are evaluated by the
average efficiency (AUC) for discriminating the protected
and non-protected groups as shown in Figure 5A.

ii. The edge biomarkers and network-based biomarkers both
have clear biological interpretation than node biomarkers,
which is evaluated by the degree of genes in the biological
network. Figure 5B shows the absolute degree of genes,
where the absolute degree for a gene is the number of edges
linked to this gene among all feature genes on the biological
network. Figure 5C shows the relative degree of genes,
where the relative degree of a gene is the ratio of numbers
of edges linked to this gene among all feature genes and
among all background genes. Obviously, the larger degree
of feature genes means closer associations/interactions
among the selected feature genes, which would indicate
potential biological functions enriched in the feature genes.

Table 1. Continued

Id Gene members KEGG pathways

Module-Core-ap-1-23 CES2,CDA,GUSB Drug metabolism—other enzymes
Module-Core-ap-1-24 GSTA3, CYP26A1, CYP2A6 Metabolism of xenobiotics by

cytochrome P450
Retinol metabolism
Chemical carcinogenesis
Drug metabolism—cytochrome P450

Module-Core-ap-1-27 GPX2,GSTT2,GGT5 Cyanoamino acid metabolism
Glutathione metabolism
Arachidonic acid metabolism
Taurine and hypotaurine metabolism

Module-Core-ap-1-30 PSMC2,PSMD8,RRAGC Proteasome
Module-Core-ap-1-34 FYN,NCK1,PTPN4 Axon guidance

T-cell receptor signaling pathway
Pathogenic Escherichia coli infection

Module-Core-ap-1-35 ARID4A,MYBL2,E2F1 HTLV-I infection
Module-Core-ap-1-37 EXO1,AURKB,HMGA1 Mismatch repair
Module-Core-ap-1-39 TAF5,POLR2B,CDK7 Basal transcription factors
Module-Core-ap-1-40 COL14A1,BGN,COL1A1 Protein digestion and absorption
Module-Core-ap-1-41 RPP30,RPP40,POP7 Ribosome biogenesis in eukaryotes

RNA transport
Module-Core-ap-1-42 STAT6,TP53,SH3BGRL3 Hepatitis B
Module-Core-ap-1-43 PA2G4,WBP11,PCBP1 Spliceosome
Module-Core-ap-1-44 ATF2,EZR,PRKACB Insulin secretion

Thyroid hormone synthesis
Dopaminergic synapse
Gastric acid secretion
Estrogen signaling pathway
Cocaine addiction
Amphetamine addiction

Table 2. Prediction accuracy of individuals at different time
windows

Time windows* w1¼ [T0,T1,T2] w2¼ [T1,T2,T3] w3¼ [T2,T3,T4]

MNGs 0.955 6 0.0189 0.979 6 0.0304 0.968 6 0.0401
DEGs 0.930 6 0.0526 0.929 6 0.0627 0.789 6 0.0718
AEPs 0.807 6 0.092 0.812 6 0.073 0.845 6 0.079
frSVMs 0.648 6 0.0995 0.643 6 0.0754 0.530 6 0.0689
Pathifiers 0.990 6 1.11e-16 0.990 6 1.11e-16 0.990 6 1.11e-16
PACs 0.553 6 0.0701 0.518 6 0.099 0.533 6 0.097
GSVAs 0.990 6 1.11e-16 0.837 6 0.0627 0.904 6 0.073

*T0: at study entry; T1: on the day of the third vaccination; T2: 24 h after the third

vaccination; T3: 72 h after the third vaccination; T4: 2 weeks after the third vac-

cination. The prediction accuracy is evaluated by the average AUC on 100� of

10-fold cross-validation and its variance.
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iii. As shown in Figure 5D, the numbers of overlapped genes
among feature genes selected by different methods are
small, which implies that these methods detect different
global or local biomarkers on the biological network.
Meanwhile, the feature genes from different methods have
many potential interactions on the biological network
(Figure 5E). Especially, 50% genes in MNGs can interact with
frSVMs, and 100% genes in frSVMs can interact with MNGs,
which means that MNG and frSVM would find biomarkers
neighboring on the biological network. Together with above
findings, MNGs show better ability on both discrimination
and interpretation of biomarkers than DEGs, AEPs and
frSVMs in this case study.

These results not only provided the biological insights into
dynamical drug sensitivity and resistance but also demon-
strated the superiority of big-data-based edge biomarkers for
evaluating disease states in terms of both effectiveness and effi-
ciency. The integration of high-confidence prior knowledge is
expected to provide additional information on the discovery of
edge biomarkers or big data biomarkers. And the future system-
atical evaluation of biomarkers in different application scen-
arios, including the study of drug sensitivity and resistance, will
inspire more powerful models and technologies in biomarker
discovery and application.

Key Points

• A key to achieve the precision medicine or personal-
ized medicine is to characterize individual diseases by
their systematical and dynamical features (e.g. net-
work and fluctuation) rather than static features (e.g.
sequence mutations or SNPs).

• Big-data-based edge biomarker is a new concept to
characterize disease features based on biomedical big
data in a dynamical and network manner, which also
provides alternative strategies to indicate disease status
in single samples. DNB (dynamical network biomarker)
is such a biomarker to indicate the critical state during
disease progression by using dynamical information.

• There are many sources and structures of biomedical
big data accessible in public for edge biomarker and
disease study. The biomedical big data are typically
‘small-sample size in high-dimension space’, i.e. small
samples but with high dimensions on feature for each
individual, in contrast to traditional big data in other
fields, i.e. big samples but with low dimensions.

• In contrast to using the information of the common
molecules or edges across a population in traditional

Figure 5. Comparison of feature genes selected by different methods in the case study. (A) The average AUC of four methods using biological networks rather than path-

ways, which evaluate the average efficiency for discriminating the protected and non-protected groups at different time points. (B) The average absolute degree of feature

genes selected by different methods correspondingly, where the absolute degree for a gene is the number of edges linked to this gene among all feature genes, which evalu-

ate the association/network among feature genes. (C) The average relative degree of feature genes selected by different methods correspondingly, where the relative degree

of a gene is the ratio of numbers of edges linked to this gene among all feature genes and among all background genes, which evaluate the association/network among fea-

ture genes compared with backgrounds. (D) The number of overlapping genes among feature genes selected by different methods correspondingly. (E) The number of asso-

ciations/edges among feature genes selected by different methods, where the values indicate the percentage of genes of one group feature genes with interactions to other

group genes. For example, 56% DEGs have interactions with MNGs, and in contrast, only 27% MNGs have interactions with DEGs.
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biomarkers including network and edge biomarkers,
big-data-based edge biomarkers are further specific for
each individual and thus can accurately evaluate the
disease state by considering the individual heterogen-
eity, i.e. high-dimensional data are required not only
in the learning process but also in the diagnosing or
predicting process of the tested individual.

• As a representation of big-data-based edge biomarker,
MNR (module network rewiring-analysis) is able to
predict the disease state by learning differential asso-
ciations between molecules rather than differential ex-
pressions of molecules during disease progression or
treatment in individual patients. MNR makes full use
of not only common molecules or edges (e.g. consist-
ent modules) but also conditional molecules or edges
(e.g. module interactions rather than molecule inter-
actions). A deep case study shows that the identified
module biomarkers from MNR can accurately distin-
guish vaccines with or without protection and outper-
formed over previous reported gene signatures in
terms of effectiveness and efficiency.

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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